Researchers use artificial intelligence language tools to decode molecular movements

UMD researchers use artificial intelligence language tools to decode molecular movements
Scientists from the University of Maryland applied a language processing system to the movements of a riboswitch molecule pictured here, to understand how and when the molecule takes different forms. Credit: Zachary Smith/UMD

By applying natural language processing tools to the movements of protein molecules, University of Maryland scientists created an abstract language that describes the multiple shapes a protein molecule can take and how and when it transitions from one shape to another.


A protein molecule’s function is often determined by its shape and structure, so understanding the dynamics that control shape and structure can open a door to understanding everything from how a protein works to the causes of disease and the best way to design targeted drug therapies. This is the first time a machine learning algorithm has been applied to biomolecular dynamics in this way, and the method’s success provides insights that can also help advance

Read More