Dust increases reflect farming practices and climate trends reminiscent of the lead-up to the 1930s Dust Bowl — ScienceDaily

Got any spaces left on that 2020 bingo card? Pencil in “another Dust Bowl in the Great Plains.” A study from University of Utah researchers and their colleagues finds that atmospheric dust levels are rising across the Great Plains at a rate of up to 5% per year.

The trend of rising dust parallels expansion of cropland and seasonal crop cycles, suggesting that farming practices are exposing more soil to wind erosion. And if the Great Plains becomes drier, a possibility under climate change scenarios, then all the pieces are in place for a repeat of the Dust Bowl that devastated the Midwest in the 1930s.

“We can’t make changes to the earth surface without some kind of consequence just as we can’t burn fossil fuels without consequences,” says Andy Lambert, lead author of the study and a recent U graduate. “So while the agriculture industry is absolutely important, we

Read More

Astrophysicists prove that dust particles in space are mixed with ice

Water trapped in star dust
Clouds of interstellar dust and gas, here in the region “Cygnus-X” in the Swan constellation. Credit: ESA/PACS/SPIRE/Martin Hennemann & Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, France.

The matter between the stars in a galaxy—called the interstellar medium—consists not only of gas, but also of a great deal of dust. At some point in time, stars and planets originated in such an environment, because the dust particles can clump together and merge into celestial bodies. Important chemical processes also take place on these particles, from which complex organic—possibly even prebiotic—molecules emerge.

However, for these processes to be possible, there has to be water. In particularly cold cosmic environments, water occurs in the form of ice. Until now, however, the connection between ice and dust in these regions of space was unclear. A research team from Friedrich Schiller University Jena and the Max Planck Institute for

Read More