Ecological power storage battery made of vanillin — ScienceDaily

Researchers at TU Graz have found a way to convert the aromatic substance vanillin into a redox-active electrolyte material for liquid batteries. The technology is an important step towards ecologically sustainable energy storage.

“It is ground-breaking in the field of sustainable energy storage technology,” says Stefan Spirk from the Institute of Bioproducts and Paper Technology at Graz University of Technology. He and his team have succeeded in making redox-flow batteries more environmentally friendly by replacing their core element, the liquid electrolyte, which are mostly made up of ecologically harmful heavy metals or rare earths — with vanillin, an important ingredient of Austrian vanilla croissants.

Sustainable energy storage

Vanillin, a commonly used flavour compound, is one of the few fine-chemicals produced from lignin. Spirk and his team refine lignin into vanillin into a redox-active material using mild and green chemistry without the use of toxic and expensive metal catalysts, so that

Read More

Ecological factors driving microbial community assembly in response to warming

global warming
Credit: CC0 Public Domain

Researchers from the OU Institute for Environmental Genomics and Department of Microbiology and Plant Biology lead a study that aims to better understand ecological community assembly mechanisms in response to climate warming.

“Understanding community assembly rules is a longstanding issue of ecologists,” said Jizhong Zhou, the director of the Institute for Environmental Genomics and a George Lynn Cross Research Professor in the OU College of Arts and Sciences. “We developed a novel framework to quantitatively infer community assembly mechanisms by phylogenetic bin-based null model analysis i.e., iCAMP.”

Using the iCAMP framework, the researchers revealed new findings on the dynamic changes of ecological processes from 2009 to 2014 in grassland bacterial communities under long-term experimental warming.

“In simulated data, iCAMP shows outstanding performance in terms of precision, sensitivity, specificity, accuracy, and robustness,” Zhou said. “Using iCAMP, we showed that climate warming increased homogeneous selection in soil bacterial

Read More