Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
Synthesis of a nanoporous PPy-silicon material. (A) High-angle annular dark-field scanning TEM top view on a nanoporous silicon membrane filled by electropolymerization with pyrrole. The green and red color codes indicate the N and Si concentration resulting from EDX detection measurements, respectively. (B) Voltage-time recording during galvanostatic electropolymerization of pyrrole in nanoporous silicon, with mean pore diameter d and thickness t. Characteristic regimes are indicated and discussed in the main text. Credit: Science Advances, doi: 10.1126/sciadv.aba1483

The absence of piezoelectricity in silicon can lead to direct electromechanical applications of the mainstream semiconductor material. The integrated electrical control of silicon mechanics can open new perspectives for on-chip actuators. In a new report, Manuel Brinker and a research team in physics, materials, microscopy and hybrid nanostructures in Germany, combined wafer-scale nanoporosity in single-crystalline silicon to synthesize a composite demonstrating macroscopic electrostrain in aqueous electrolytes. The voltage-strain coupling was three-orders of magnitude larger

Read More