High-speed photos shine a light on how metals fail

High-speed photos shine a light on how metals fail
An alloy sample being stretched in front of the laser-high speed camera set up. Credit: Aalto University

How things deform and break is important for engineers, as it helps them choose and design what materials they’re going to use for building things. Researchers at Aalto University and Tampere University have stretched metal alloy samples to their breaking point and filmed it using ultra-fast cameras to study what happens. Their discoveries have the potential to open up a whole new line of research in the study of materials deformation.


When materials get stretched a bit, they expand, and when the stretching stops, they return to their original size. However, if a material gets stretched a lot, they no longer return back to their original size. This over-stretching is referred to as ‘plastic’ deformation. Materials that have begun to be plastically deformed behave differently when they’re stretched even more, and eventually snap

Read More

Rare Earth Metals Get The Presidential Treatment

Last Wednesday, the president signed an executive order addressing the threat posed by the United States’ overreliance on “critical minerals” from “foreign adversaries.”

To be more specific, “critical minerals” here means “rare earth metals,” and “foreign adversaries” means “China.”

Although not as rare as gold, the group of 17 metals are used in the manufacture of advanced technologies, including electric vehicles, wind turbines and missile guidance systems. Your iPhone contains a number of them. Each F-35 fighter jet has about half a ton of these strategic elements.

The problem is that the U.S. no longer produces barite (used in fracking), gallium (semiconductors, 5G telecommunications), graphite (smartphone batteries) and a number of other materials. “For 31 of the 35 critical minerals, the United States imports more than half of its annual consumption,” according to the press release.

Today, China controls some 80 percent to 95 percent of the world market,

Read More

Liquid metals come to the rescue of semiconductors

Liquid metals come to the rescue of semiconductors
Credit: University of New South Wales

Moore’s law is an empirical suggestion stating that the number of transistors doubles every few years in integrated circuits (ICs). However, Moore’s law has started to fail as transistors are now so small that current silicon-based technologies are unable to offer further opportunities for shrinking.


One possibility of overcoming Moore’s law is to resort to two-dimensional semiconductors. These two-dimensional materials are so thin that they can allow the propagation of free charge carriers, namely electrons and holes in transistors that carry the information, along an ultra-thin plane. This confinement of charge carriers can potentially allow the switching of the semiconductor very easily. It also allows directional pathways for the charge carriers to move without scattering and therefore leading to infinitely small resistance for the transistors.

This means that in theory, the two-dimensional materials can result in transistors that do not waste energy during their

Read More

Trump Executive Order on Critical Metals Aimed at Reducing Chinese Dependence on Imported Graphite Perfect Timing for Lomiko

Lomiko Metals Inc. (“Lomiko”) (TSX-V: LMR, OTC: LMRMF, FSE: DH8C) is focused on the exploration and development of graphite for the new green economy. Lomiko has been monitoring actions by government in Canada and the USA that are focused on reducing dependence on Chinese supply of graphite, lithium and other electric vehicle battery materials. Canada and the USA have worked closely and confirmed supply agreements between the two countries.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20201007005305/en/

Electric Vehicle Sales to Climb for 20 years (Graphic: Business Wire)

President Donald Trump recently signed an Executive Order entitled Executive Order on Addressing the Threat to the Domestic Supply Chain from Reliance on Critical Minerals from Foreign Adversaries, which is focused on creating North American suppliers of Battery Materials.

Excerpts from Executive Order:

“…the United States is 100 percent reliant on imports for graphite, which is

Read More

Team of materials researchers explores new domains of the compositionally complex metals — ScienceDaily

The most significant advances in human civilization are marked by the progression of the materials that humans use. The Stone Age gave way to the Bronze Age, which in turn gave way to the Iron Age. New materials disrupt the technologies of the time, improving life and the human condition.

Modern technologies can likewise be directly traced to innovations in the materials used to make them, as exemplified by the use of silicon in computer chips and state-of-the-art steels that underpin infrastructure. For centuries, however, materials and alloy design have relied on the use of a base, or principal, element, to which small fractions of other elements are added. Take steel, for instance, in which tiny amounts of carbon added to the principal element iron (Fe), lead to improved properties. When small amounts of other elements are added, the steel can be tailored for, say, enhanced corrosion resistance or improved

Read More

First evidence that air pollution particles and metals are reaching the placenta — ScienceDaily

Pollution particles, including metals, have been found in the placentas of fifteen women in London, according to research led by Queen Mary University of London.

The study, funded by Barts Charity and published in the journal Science of The Total Environment, demonstrate that inhaled particulate matter from air pollution can move from the lungs to distant organs, and that it is taken up by certain cells in the human placenta, and potentially the fetus.

The researchers say that further research is needed to fully define the direct effect that pollution particles may have on the developing fetus.

Lead author Professor Jonathan Grigg from Queen Mary University of London said: “Our study for the first time shows that inhaled carbon particulate matter in air pollution, travels in the blood stream, and is taken up by important cells in the placenta. We hope that this information will encourage policy makers to

Read More

Researchers analyse how 3-D printed metals fracture

Researchers analyse how 3-D printed metals fracture
Tomography reconstruction of an aluminium alloy manufactured using 3D printing techniques (micro voids are coloured orange). Credit: Universidad Carlos III de Madrid

3-D-printed metals have been used since the 1980s to produce a wide range of parts for various industries. These materials often have tiny pores inside them (around dozens of micrometers in size), which can get bigger when a load is applied to them, due to their manufacturing process. The team of researchers has analyzed what happens to these “micro voids” when applying a load to them in order to understand how these ductile metals (capable of absorbing energy) fracture.


“For example, most of the structural elements in cars are made of ductile metal, so that they are able to absorb energy in the event of a collision. This means that security will be increased if a traffic accident occurs. So, understanding and predicting how ductile metals fracture is

Read More

New sources for rare metals vital in modern technology

New sources for rare metals vital in modern technology
One of the field sites in northern Madagascar. Thick clay deposits have formed above rocks formed in an old volcano by the name of Ambohimirahavavy. The volcano was active around 24 million years ago and has since eroded to expose its interior. The rocks closest to the surface weathered to form a clay deposit in which the original minerals were broken down to release their rare metals, which then stuck to the clay minerals. Credit: Kathryn Goodenough and Martin Smith

Research led by the Universities of St Andrews and Brighton reveals newly discovered sources for rare earth metals vital in modern technologies such as renewables production, mobile phones, laptops and televisions.


The research, published in Nature Communications investigated alternative sources of much sought after heavy rare earth metals used in every day modern technologies, focussing on subtropical soils in Northern Madagascar.

Modern technologies, such as those producing green energy from

Read More