‘Like a fishing net,’ nanonet collapses to trap drug molecules

'Like a fishing net,' nanonet collapses to trap drug molecules
a Chemical structure of PPSU showing the polymer backbone and oxygen atoms that carry positive/negative (blue/red) atomic partial charges, respectively. b Atomistic simulation snapshot showing a dissolution-complementarity equilibrium in DMSO for six PPSU20 chains. Inset is a superstructure formed by PPSU self- complementarity. c PPSU self-complementarity leading to a 2D reversible superstructure with enrichment of oxygen atoms on the surface. Formation of 3D superstructures is inhibited in DMSO due to the strong repulsion among layers. d Average dipolar energies per dipole-dipole pair of sulfone–sulfone and sulfone-solvent. Error bars represent the standard deviation from three parallel simulations. e Atomistic simulation snapshot showing the formation of a 3D superstructure through PPSU bundling in water. Inset showing the 3D superstructure with or without water molecules. Credit: Nature Communications (2020). DOI: 10.1038/s41467-020-18657-5

Northwestern University researchers are casting a net for nanoparticles.

The team has discovered a new, rapid method for fabricating nanoparticles from a

Read More

‘Digital chemistry’ breakthrough turns words into molecules

Credit: OpenClipartVectors, CC0 Public Domain

A new system capable of automatically turning words into molecules on demand will open up the digitisation of chemistry, scientists say.

Researchers from the University of Glasgow’s School of Chemistry, who developed the system, claim it will lead to the creation of a “Spotify for chemistry”—a vast online repository of downloadable recipes for important molecules including drugs.

The creation of such a system could help developing countries more easily access medications, enable more efficient international scientific collaboration, and even support the human exploration of space.

The Glasgow team, led by Professor Lee Cronin, have laid the groundwork for digital chemistry with the development of what they call a “chemical processing unit”—an affordable desktop-sized robot chemist which is capable of doing the repetitive and time-consuming work of creating chemicals. Other robot chemists, built with different operating systems, have also been developed elsewhere.

Up until now, those

Read More

A new approach to look inside of molecules — ScienceDaily

In 1921, Albert Einstein received the Nobel Prize in physics for the discovery that light is quantized, interacting with matter as a stream of particles called photons. Since these early days of quantum mechanics, it is known that photons also possess momentum. The photon’s ability to transfer momentum was used in a novel approach by scientists of the Max Born Institute, Uppsala University, and the European X-Ray Free-Electron Laser Facility to observe a fundamental process in the interaction of x-rays with atoms. The detailed experimental and theoretical results are reported in the journal Science.

Absorption as well as emission of a photon by an atom are fundamental processes of the interaction of light with matter. Much rarer are processes in which several photons simultaneously interact with one atom. The availability of intense laser beams since the 1960s has led to the development of “nonlinear optics,” which observes and utilizes such

Read More

Targeting RNA with small molecules could pave the way for new antivirals — ScienceDaily

A study appearing next week in the journal Nature Communications offers some good news in the search for antiviral drugs for hard-to-treat diseases. Researchers have identified a potential new drug candidate against enterovirus 71, a common cause of hand, foot and mouth disease in infants and young children.

The compound of interest is a small molecule that binds to RNA, the virus’s genetic material, and changes its 3-D shape in a way that stops the virus from multiplying without harming its human host.

There are currently no FDA-approved drugs or vaccines for enterovirus 71, which affects hundreds of thousands of children each year, particularly in Southeast Asia. While most people get better within 7 to 10 days after suffering little more than a fever and rash, severe cases can cause brain inflammation, paralysis and even death.

The work could pave the way for new treatments for other viral infections as

Read More