Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible — ScienceDaily

Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible and more, someday, thanks to an ambitious new project underway at the National Institute of Standards and Technology (NIST).

NIST researchers are in the early stages of a massive undertaking to design and build a fleet of tiny ultra-sensitive thermometers. If they succeed, their system will be the first to make real-time measurements of temperature on the microscopic scale in an opaque 3D volume — which could include medical implants, refrigerators, and even the human body.

The project is called Thermal Magnetic Imaging and Control (Thermal MagIC), and the researchers say it could revolutionize temperature measurements in many fields: biology, medicine, chemical synthesis, refrigeration, the automotive industry, plastic production — “pretty much anywhere temperature plays a critical role,” said NIST physicist Cindi Dennis. “And that’s everywhere.”

The NIST team has now finished building

Read More

Methods reveal understanding of the location of hydrogen in ferritic steels — ScienceDaily

As the global energy market shifts from coal, petroleum fuel, and natural gas to more environmentally friendly primary energy sources, hydrogen is becoming a crucial pillar in the clean energy movement. Developing safe and cost-effective storage and transportation methods for hydrogen is essential but complicated given the interaction of hydrogen with structural materials.

Hydrogen can cause brittleness in several metals including ferritic steel — a type of steel used in structural components of buildings, automobile gears and axles, and industrial equipment. Recent advancements in experimental tools and multiscale modeling are starting to provide insight into the embrittlement process.

A review of various methods, published in Applied Physics Reviews, from AIP Publishing, has improved the understanding of the structure, property, and performance of ferritic steels that are subjected to mechanical loading in a hydrogen environment. While there are many studies of stainless steel, the researchers concentrated on ferritic steel, a

Read More

Understanding the effect of aging on the genome — ScienceDaily

Time may be our worst enemy, and aging its most powerful weapon. Our hair turns grey, our strength wanes, and a slew of age-related diseases represent what is happening at the cellular and molecular levels. Aging affects all the cells in our body’s different tissues, and understanding its impact would be of great value in fighting this eternal enemy of all ephemeral life forms.

The key is to first observe and measure. In a paper published in Cell Reports, scientists led by Johan Auwerx at EPFL started by asking a simple question: how do the tissues of aging mice differ from those of mice that are mere adults?

To answer the question, the researchers used the multiple techniques to measure the expression of everyone one of the thousands of mouse’s genes, and to identify any underlying epigenetic differences. The researchers not only measured different layers of information, but they

Read More

Throwing a warm sheet over our understanding of ice and climate

antarctica
Credit: Pixabay/CC0 Public Domain

Temperatures at Earth’s highest latitudes were nearly as warm after Antarctica’s polar ice sheets developed as they were prior to glaciation, according to a new study led by Yale University. The finding upends most scientists’ basic understanding of how ice and climate develop over long stretches of time.


The study, based on a reconstruction of global surface temperatures, gives researchers a better understanding of a key moment in Earth’s climate history—when it transitioned from a “greenhouse” state to an “icehouse” state. The study appears in the journal Proceedings of the National Academy of Sciences the week of Sept. 28.

“This work fills in an important, largely unwritten chapter in Earth’s surface temperature history,” said Pincelli Hull, assistant professor of earth and planetary studies at Yale, and senior author of the study.

Charlotte O’Brien, a former Yale Institute for Biospheric Studies (YIBS) Donnelley Postdoctoral Fellow who is

Read More

Understanding ghost particle interactions

Understanding ghost particle interactions
Cross sections of neutrino-nucleus interactions versus energy. Improved agreement between experiment and model calculations clearly shown for case of nucleon pair rather than single nucleon. Inset shows neutrino interacting with nucleus and ejecting a lepton. Credit: Argonne National Laboratory

Scientists often refer to the neutrino as the “ghost particle.” Neutrinos were one of the most abundant particles at the origin of the universe and remain so today. Fusion reactions in the sun produce vast armies of them, which pour down on the Earth every day. Trillions pass through our bodies every second, then fly through the Earth as though it were not there.


“While first postulated almost a century ago and first detected 65 years ago, neutrinos remain shrouded in mystery because of their reluctance to interact with matter,” said Alessandro Lovato, a nuclear physicist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Lovato is a member of

Read More

Understanding how viruses invade host cell protein-making machinery — ScienceDaily

Infectious viruses come in many shapes and sizes and use slightly different attack mechanisms to make humans and animals sick. But all viruses share something in common: They can only do damage by replicating inside the cells of another organism — their host.

This broad, fundamental process of how viruses trick host cells into making copies of the virus has had a team of Colorado State University scientists captivated for several years. A collaboration between the labs of Monfort Professor Tim Stasevich, in the Department of Biochemistry and Molecular Biology, and Associate Professor Brian Munsky, in the Department of Chemical and Biological Engineering, is on a mission to understand, in visual detail and with mathematical precision, all aspects of viral attack strategies, including how viruses invade host cell protein-making machinery. Their work, supported by grants from the National Institute of General Medicine and the W. M. Keck Foundation, could provide

Read More

Understanding how the conditionally approved COVID-19 drug works is key to improving treatments, says researcher — ScienceDaily

Researchers at the University of Alberta have discovered a novel, second mechanism of action by the antiviral drug remdesivir against SARS-CoV-2, according to findings published today in the Journal of Biological Chemistry.

The research team previously demonstrated how remdesivir inhibits the COVID-19 virus’s polymerase or replication machinery in a test tube.

Matthias Götte, chair of medical microbiology and immunology in the Faculty of Medicine & Dentistry, likened the polymerase to the engine of the virus. He said the first mechanism the team identified is like putting diesel fuel into an engine that needs regular gasoline.

“You can imagine that if you give it more and more diesel, you will go slower and slower and slower,” he said.

The newly identified mechanism is more like a roadblock, “so if you want to go from A to B with the wrong fuel and terrible road conditions, you either never reach B

Read More

Risk is low no matter the timing of birth, but new insights could improve understanding of ASD — ScienceDaily

A study of more than 3.5 million Nordic children suggests that the risk of autism spectrum disorder (ASD) may increase slightly for each week a child is born before or after 40 weeks of gestation. Martina Persson of the Karolinska Institutet in Stockholm, Sweden and colleagues present these findings in the open-access journal PLOS Medicine.

The causes of ASD are complex and remain unresolved, but they likely involve both genetic and environmental factors. Some previous research suggests that children born before or after their due dates (40 weeks of gestation) may have an elevated risk of ASD. However, most of those studies have been limited in scope and have not accounted for sex and birth weight.

To better understand potential links between gestational age and risk of ASD, Persson and colleagues analyzed medical registry data on more than 3.5 million children born in Sweden, Finland, or Norway between 1995

Read More

New types of aurora are upending our understanding of polar lights

  • Scientists, amateur aurora-hunters, and a NASA intern have discovered fascinating new types of aurora in recent years.
  • One new type of aurora revealed curls in Earth’s upper atmosphere, and another pointed to a strange magnetic crunch in space.
  • New observations of Jupiter’s aurorae have also raised questions about the nature of these lights.
  • Visit Business Insider’s homepage for more stories.

The colorful lights that dance across polar skies create beautiful displays, but they also reveal mysteries about how planets, space, and the sun interact.

Though humans have been observing the aurora for centuries, scientists are still learning about how it works. Just this year, amateur aurora-hunters discovered a new type of aurora that could come from space particles heating Earth’s upper atmosphere. A NASA intern also revealed a new type of twisting aurora, which led scientists to a mysterious crunch in Earth’s magnetic field. 

The lights at Earth’s poles continue

Read More