New Tech Expands Distributed Generation’s Role in Greening the Grid (Part 2)

In Part 1, we looked at how industrial-scale distributed generating plants (typically hundreds of kilowatts to tens of megawatts), powered by renewable energy, are playing an important role in creating a new generation of more resilient, more sustainable power grids. We also saw that, regardless whether they make power from the sun’s distant rays or a nearby city’s sewage sludge, they’re still subject to the same technical requirements for regulating, conditioning, and distributing their output through the power grid as their larger fossil-fueled counterparts.

Fig 1 Opener Ieso Der Graphic

Source: Independent Electricity System Operators (IESO)

Here, we’ll take a closer look at how the equipment used in distributed generation systems must evolve to meet the industry’s changing requirements. While still undergoing some growing pains, distributed generation technologies are technically mature and well-defined enough whereby major utility operators, such as the Sacramento Municipal Utility District (SMUD) and CPS Energy, have developed extensive standards that define

Read More

Warming temperatures are driving Arctic greening

Warming temperatures are driving arctic greening
When Arctic tundra greens, undergoing increased plant growth, it can impact wildlife species including reindeer and caribou. Credit: Logan Berner/Northern Arizona University

As Arctic summers warm, Earth’s northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.


“The Arctic tundra is one of the coldest biomes on Earth, and it’s also one of the most rapidly warming,” said Logan Berner, a global change ecologist with Northern Arizona University in Flagstaff, who led the recent research. “This Arctic greening we see is really a bellwether of global climatic change—it’s a biome-scale response to rising air temperatures.”

The study, published this week in Nature Communications, is the first to measure vegetation changes spanning the entire Arctic tundra, from Alaska and Canada to Siberia, using satellite data from

Read More